

Cryptographic Recommendations Smals

Creation date: 2025-10-28

WARNING: This document is generated in the context of experiments by Smals Research and has no authoritative value.

Symmetric Encryption

Recommended

Name	Type	Classical security	Quantum security	Conditions	Remarks	References
AES-128-GCM	authenticated encryption	128	1	[0, 1, 2, 3, 4]		[0, 1]
AES-192-GCM	authenticated encryption	192	3	[0, 1, 2, 3, 4]		[0, 1]
AES-256-GCM	authenticated encryption	256	5	[0, 1, 2, 3, 4]		[0, 1]
AES-128-GCM-SIV	authenticated encryption	128	1	[1, 5]		[2]
AES-256-GCM-SIV	authenticated encryption	256	5	[1, 5]		[2]

Secure

Name	Type	Classical security	Quantum security	Conditions	Remarks	References
AES-128-CCM	authenticated encryption	128	1	[6, 2, 4]		[0, 3]
AES-192-CCM	authenticated encryption	192	3	[6, 2, 4]		[0, 3]
AES-256-CCM	authenticated encryption	256	5	[6, 2, 4]		[0, 3]

Phase-out

Name	Type	Classical security	Quantum security	Conditions	Remarks	References
AES-128-CBC	symmetric encryption	128	1	[7, 8, 9]		[0, 4]
AES-192-CBC	symmetric encryption	192	3	[7, 8, 9]		[0, 4]
AES-256-CBC	symmetric encryption	256	5	[10, 11, 8, 9]		[0, 4]
AES-128-CTR	symmetric encryption	128	1	[12, 13]		[0, 4]
AES-192-CTR	symmetric encryption	192	3			[0, 4]
AES-256-CTR	symmetric encryption	256	5	[2, 4, 13]		[0, 4]

Insecure

Name	Type	Classical security	Quantum security	Conditions	Remarks	References
AES-128-ECB	symmetric encryption	0	0		[0]	
AES-192-ECB	symmetric encryption	0	0		[0]	
AES-256-ECB	symmetric encryption	0	0		[0]	

DES	blockcipher	0	0		[1]	
Blowfish	blockcipher	0	0		[2]	
TDAE	blockcipher	0	0		[3, 4]	

Padding schemes

Recommended

Name	Type	Conditions	Remarks	References
ISO-Padding	padding		[5]	[5, 6]
ESP-Padding	padding		[5]	[7]
RFC 5652	padding		[5]	[8]

Secure

Phase-out

Insecure

Conditions

- [0] For initialization vectors, a bit length of 96 bits is recommended.
- [1] A key change is required after at most 2^{32} calls of the authenticated encryption function.
- [2] Initialization vectors must not repeat within the lifetime of a key.
- [3] Tags of at least 96 bits should be used.
- [4] When encrypting a t block message, with $IV = j$, we never take a new nonce in the range $[j, j+t-1]$.
- [5] AES-GCM-SIV is defined for AES-128 and AES-256, so a key length of 192 bits should not be used
- [6] A tag length of > 96 bits is recommended.
- [7] Only unpredictable initialization vectors are to be used. A single key should not be used to encrypt more than 2^{64} blocks (key exhaustion).
- [8] CBC mode only offers confidentiality, making it susceptible to malleability attacks. Use of CBC mode SHOULD be accompanied by a data authentication mechanism.
- [9] Formatting by filling the last block to the required block size is also called padding. Only the CBC mode requires a padding step.
- [10] Only unpredictable initialization vectors are to be used.
- [11] A single key should not be used to encrypt more than 2^{64} blocks (key exhaustion).
- [12] Initialization vectors must not repeat within the lifetime of a key. When encrypting a t block message, with $IV = j$, we never take a new nonce in the range $[j, j+t-1]$.
- [13] CTR mode only offers confidentiality, making it susceptible to malleability attacks. Use of CTR mode SHOULD be accompanied by a data authentication mechanism.

Remarks

- [0] Replicating the same plaintext block results in identical ciphertext blocks. That exposes a pattern in the encrypted data; hence, the application of ECB mode is only suitable when dealing with single-value encryption, for example, the transmission of a key.

- [1] Its key length of 56 bits makes it insecure
- [2] Its 64 block length makes it susceptible to birthday attacks
- [3] Triple Data Encryption Algorithm, also known as Triple DES
- [4] Insecure because of 1) Small block length of only 64 bits, 2) Reduced security against generic attacks on block ciphers, and 3) Various other undesirable properties
- [5] In CBC mode of operation, care must be taken to ensure that an attacker cannot learn from error messages or other side-channels whether the padding of an introduced data packet was correct.

References

- [0] FIPS PUB 197 (2001)
- [1] NIST SP 800-38D (2007)
- [2] RFC 8452 (2019)
- [3] NIST SP 800-38C (2004)
- [4] NIST SP 800-38A (2001)
- [5] ISO/IEC 9797-1:2011, method 2
- [6] NIST SP 800-38A, appendix A
- [7] RFC 4303, section 2.4
- [8] RFC 5652, section 6.3